Поиск по сайту:
Чтобы обучить другого, требуется больше ума, чем чтобы научиться самому (М. Монтень).

TensorFlow — сверточные нейронные сети

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (2 оценок, среднее: 5,00 из 5)
Загрузка...
20.06.2019
Как установить TensorFlow на CentOS 7

После понимания концепций машинного обучения мы можем переключить наше внимание на концепции глубокого обучения. Глубокое обучение является разделом машинного обучения и считается решающим шагом, предпринятым исследователями в последние десятилетия. Примеры реализации глубокого обучения включают в себя такие приложения, как распознавание изображений и распознавание речи.

Ниже приведены два важных типа глубоких нейронных сетей:

  • Сверточные нейронные сети
  • Рекуррентные нейронные сети

В этой главе мы сосредоточимся на CNN, сверточных нейронных сетях.

 

Сверточные нейронные сети

Сверточные нейронные сети предназначены для обработки данных через несколько уровней массивов. Этот тип нейронных сетей используется в таких приложениях, как распознавание изображений или распознавание лиц. Основное различие между CNN и любой другой обычной нейронной сетью состоит в том, что CNN принимает входные данные в виде двумерного массива и работает непосредственно с изображениями, а не фокусируется на извлечении признаков, на котором сосредоточены другие нейронные сети.

Доминирующий подход CNN включает в себя решения проблем распознавания. Ведущие компании, такие как Google и Facebook, вложили средства в исследования и разработки для реализации проектов по распознаванию, чтобы ускорить процесс.

Сверточная нейронная сеть использует три основных идеи:

  • Местные соответствующие поля
  • Свертка
  • Объединение

Позвольте нам понять эти идеи в деталях.

CNN использует пространственные корреляции, которые существуют во входных данных. Каждый параллельный слой нейронной сети соединяет несколько входных нейронов. Этот конкретный регион называется локальным рецептивным полем. Местное рецептивное поле фокусируется на скрытых нейронах. Скрытые нейроны обрабатывают входные данные внутри упомянутого поля, не осознавая изменений за пределами определенной границы.

Читать  Samsung Galaxy AI появится на Galaxy S23, складных устройствах и планшетах в следующем месяце

Ниже приведено схематическое представление генерации соответствующих полей:

TensorFlow - сверточные нейронные сети

 

Если мы наблюдаем вышеупомянутое представление, каждое соединение узнает вес скрытого нейрона с ассоциированной связью с перемещением от одного слоя к другому. Здесь отдельные нейроны время от времени выполняют сдвиг. Этот процесс называется «свертка».

Отображение соединений от входного слоя к карте скрытых объектов определяется как «общие веса», а включенное смещение называется «общим смещением».

CNN или сверточные нейронные сети используют уровни объединения, которые являются уровнями, расположенными сразу после объявления CNN. Он принимает входные данные пользователя в виде карты объектов, которая выходит из сверточных сетей и подготавливает сжатую карту объектов. Объединение слоев помогает в создании слоев с нейронами предыдущих слоев.

 

Внедрение TensorFlow CNN

В этом разделе мы узнаем о реализации CNN TensorFlow. Шаги, которые требуют выполнения и правильного измерения всей сети, как показано ниже:

Шаг 1 — Включите необходимые модули для TensorFlow и модули набора данных, которые необходимы для вычисления модели CNN.

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data

 

Шаг 2 — Объявите функцию run_cnn(), которая включает в себя различные параметры и переменные оптимизации с объявлением заполнителей данных. Эти переменные оптимизации объявят схему обучения.

def run_cnn():
   mnist = input_data.read_data_sets("MNIST_data/", one_hot = True)
   learning_rate = 0.0001
   epochs = 10
   batch_size = 50

 

Шаг 3 — На этом шаге мы объявим заполнители обучающих данных с входными параметрами — для 28 x 28 пикселей = 784. Это сглаженные данные изображения, которые извлекаются из mnist.train.nextbatch().

Читать  Материнские платы Gigabyte Z890 демонстрируют функции искусственного интеллекта для процессоров Intel

Мы можем изменить форму тензора в соответствии с нашими требованиями. Первое значение (-1) указывает функции динамически формировать это измерение на основе объема данных, переданных ему. Два средних размера установлены на размер изображения (то есть 28 х 28).

x = tf.placeholder(tf.float32, [None, 784])
x_shaped = tf.reshape(x, [-1, 28, 28, 1])
y = tf.placeholder(tf.float32, [None, 10])

 

Шаг 4 — Теперь важно создать несколько сверточных слоев:

layer1 = create_new_conv_layer(x_shaped, 1, 32, [5, 5], [2, 2], name = 'layer1')
layer2 = create_new_conv_layer(layer1, 32, 64, [5, 5], [2, 2], name = 'layer2')

 

Шаг 5 — Давайте сгладим выход, готовый для полностью подключенного выходного каскада — после объединения двух слоев шага 2 с размерами 28 x 28, до размера 14 x 14 или минимум 7 x 7 x, y координаты, но с 64 выходными каналами. Чтобы создать полностью связанный с «плотным» слоем, новая форма должна быть [-1, 7 х 7 х 64]. Мы можем установить некоторые веса и значения смещения для этого слоя, а затем активировать с помощью ReLU.

flattened = tf.reshape(layer2, [-1, 7 * 7 * 64])

wd1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1000], stddev = 0.03), name = 'wd1')
bd1 = tf.Variable(tf.truncated_normal([1000], stddev = 0.01), name = 'bd1')

dense_layer1 = tf.matmul(flattened, wd1) + bd1
dense_layer1 = tf.nn.relu(dense_layer1)

 

Шаг 6 — Другой уровень с определенными активациями softmax с требуемым оптимизатором определяет оценку точности, которая выполняет настройку оператора инициализации.

wd2 = tf.Variable(tf.truncated_normal([1000, 10], stddev = 0.03), name = 'wd2')
bd2 = tf.Variable(tf.truncated_normal([10], stddev = 0.01), name = 'bd2')

dense_layer2 = tf.matmul(dense_layer1, wd2) + bd2
y_ = tf.nn.softmax(dense_layer2)

cross_entropy = tf.reduce_mean(
   tf.nn.softmax_cross_entropy_with_logits(logits = dense_layer2, labels = y))

optimiser = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

init_op = tf.global_variables_initializer()

 

Читать  Intel готовится стать мировым производителем искусственного интеллекта

Шаг 7 — Мы должны установить переменные записи. Это добавляет сводку для хранения точности данных.

tf.summary.scalar('accuracy', accuracy)
   merged = tf.summary.merge_all()
   writer = tf.summary.FileWriter('E:\TensorFlowProject')
   
   with tf.Session() as sess:
      sess.run(init_op)
      total_batch = int(len(mnist.train.labels) / batch_size)
      
      for epoch in range(epochs):
         avg_cost = 0
      for i in range(total_batch):
         batch_x, batch_y = mnist.train.next_batch(batch_size = batch_size)
            _, c = sess.run([optimiser, cross_entropy], feed_dict = {
            x:batch_x, y: batch_y})
            avg_cost += c / total_batch
         test_acc = sess.run(accuracy, feed_dict = {x: mnist.test.images, y:
            mnist.test.labels})
            summary = sess.run(merged, feed_dict = {x: mnist.test.images, y:
            mnist.test.labels})
         writer.add_summary(summary, epoch)

   print("\nПолный курс обучения!")
   writer.add_graph(sess.graph)
   print(sess.run(accuracy, feed_dict = {x: mnist.test.images, y:
      mnist.test.labels}))

def create_new_conv_layer(
   input_data, num_input_channels, num_filters,filter_shape, pool_shape, name):

   conv_filt_shape = [
      filter_shape[0], filter_shape[1], num_input_channels, num_filters]

   weights = tf.Variable(
      tf.truncated_normal(conv_filt_shape, stddev = 0.03), name = name+'_W')
   bias = tf.Variable(tf.truncated_normal([num_filters]), name = name+'_b')

#Out layer defines the output
   out_layer =
      tf.nn.conv2d(input_data, weights, [1, 1, 1, 1], padding = 'SAME')

   out_layer += bias
   out_layer = tf.nn.relu(out_layer)
   ksize = [1, pool_shape[0], pool_shape[1], 1]
   strides = [1, 2, 2, 1]
   out_layer = tf.nn.max_pool(
      out_layer, ksize = ksize, strides = strides, padding = 'SAME')

   return out_layer

if __name__ == "__main__":
run_cnn()

 

Ниже приведен вывод, сгенерированный вышеуказанным кодом:

See @{tf.nn.softmax_cross_entropy_with_logits_v2}.

2019-06-20 09:45:23.746375: I
T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:140]
Your CPU supports instructions that this TensorFlow binary was not compiled to
use: AVX2

2019-06-20 09:46:43.837465: W
T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation
of 1003520000 exceeds 10% of system memory.

2019-06-20 09:46:46.746678: W
T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation
of 501760000 exceeds 10% of system memory.

Epoch: 1 cost = 0.676 test accuracy: 0.940

2019-06-20 09:47:33.857665: W
T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation
of 1003520000 exceeds 10% of system memory.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Если статья понравилась, то поделитесь ей в социальных сетях:

Читайте также

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest

**ссылки nofollow

0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
Рекомендуемое
В этой главе мы узнаем об основах TensorFlow. Начнем с понимания…

Спасибо!

Теперь редакторы в курсе.