Поиск по сайту:
Не тот глуп, кто не знает, но тот, кто знать не хочет (Г.С. Сковорода).

TensorFlow — Машинное обучение и глубокое обучение

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (1 оценок, среднее: 5,00 из 5)
Загрузка...
07.06.2019
Как установить TensorFlow на CentOS 7

Искусственный интеллект — одна из самых популярных тенденций последнего времени. Машинное обучение и глубокое обучение составляют искусственный интеллект. Диаграмма Венна, показанная ниже, объясняет взаимосвязь машинного обучения и глубокого обучения:

TensorFlow - Машинное обучение и глубокое обучение

 

Машинное обучение

Машинное обучение — это наука о том, как заставить компьютеры действовать в соответствии с алгоритмами, разработанными и запрограммированными. Многие исследователи считают, что машинное обучение — лучший способ достичь ИИ на уровне человека. Машинное обучение включает в себя следующие типы моделей

  • Контролируемая модель обучения
  • Необучаемая модель обучения

 

Глубокое обучение

Глубокое обучение — это подполе машинного обучения, где соответствующие алгоритмы вдохновлены структурой и функциями мозга, называемыми искусственными нейронными сетями.

Вся ценность глубокого обучения сегодня заключается в контролируемом обучении или обучении с использованием маркированных данных и алгоритмов.

Каждый алгоритм глубокого обучения проходит один и тот же процесс. Он включает в себя иерархию нелинейного преобразования входных данных, которые можно использовать для создания статистической модели в качестве выходных данных.

Рассмотрим следующие шаги, которые определяют процесс машинного обучения

  • Идентифицирует соответствующие наборы данных и подготавливает их для анализа.
  • Выбирает тип алгоритма для использования
  • Создает аналитическую модель на основе используемого алгоритма.
  • Обучает модель на тестовых наборах данных, пересматривая ее по мере необходимости.
  • Запускает модель для генерации результатов тестов.

 

Разница между машинным обучением и глубоким обучением

В этом разделе мы узнаем о разнице между машинным обучением и глубоким обучением.

Читать  TensorFlow - Математические основы

 

Количество данных

Машинное обучение работает с большими объемами данных. Это полезно для небольших объемов данных тоже. Глубокое обучение, с другой стороны, работает эффективно, если объем данных быстро увеличивается. Следующая диаграмма показывает работу машинного обучения и глубокого обучения с количеством данных:

TensorFlow - Машинное обучение и глубокое обучение

Аппаратные зависимости

Алгоритмы глубокого обучения предназначены для сильной зависимости от высокопроизводительных машин в отличие от традиционных алгоритмов машинного обучения. Алгоритмы глубокого обучения выполняют ряд операций умножения матриц, которые требуют большого количества аппаратной поддержки.

 

Характеристика

Проектирование функций — это процесс внедрения знаний в предметные области в определенные функции, чтобы уменьшить сложность данных и создать шаблоны, которые будут видны алгоритмам обучения, с которыми он работает.

Пример. Традиционные шаблоны машинного обучения фокусируются на пикселях и других атрибутах, необходимых для процесса разработки функций. Алгоритмы глубокого обучения ориентированы на высокоуровневые возможности данных. Это уменьшает задачу разработки экстрактора новых функций для каждой новой проблемы.

 

Подход к решению проблем

Традиционные алгоритмы машинного обучения следуют стандартной процедуре для решения проблемы. Он разбивает проблему на части, решает каждую из них и объединяет их, чтобы получить требуемый результат. Глубокое обучение фокусируется на решении проблемы от конца до конца, а не разбивает их на подразделения.

 

Время исполнения

Время выполнения — это количество времени, необходимое для обучения алгоритма. Глубокое обучение требует много времени для обучения, так как оно включает много параметров, которые занимают больше времени, чем обычно. Алгоритм машинного обучения сравнительно требует меньше времени выполнения.

Читать  Члены ЮНЕСКО приняли глобальное соглашение по этике и искусственному интеллекту

 

Интерпретируемость

Интерпретируемость является основным фактором для сравнения алгоритмов машинного обучения и глубокого обучения. Основная причина заключается в том, что глубокому обучению еще предстоит подумать, прежде чем использовать его в промышленности.

 

Применение машинного обучения и глубокого обучения

В этом разделе мы узнаем о различных применениях машинного обучения и глубокого обучения.

  • Компьютерное зрение, которое используется для распознавания лиц и следов посещаемости через отпечатки пальцев или идентификацию транспортного средства через номерной знак.
  • Поиск информации из поисковых систем, таких как текстовый поиск для поиска изображений.
  • Автоматизированный почтовый маркетинг с указанием целевой идентификации.
  • Медицинский диагноз раковых опухолей или выявление аномалий любого хронического заболевания.
  • Обработка естественного языка для таких приложений, как фото-теги. Лучший пример для объяснения этого сценария используется в Facebook.
  • Он-лайн реклама.

 

Будущие тенденции

  • В связи с растущей тенденцией использования данных и машинного обучения в отрасли для каждой организации будет важно внедрять машинное обучение в своих предприятиях.
  • Глубокое обучение приобретает все большее значение, чем машинное обучение. Глубокое обучение оказывается одним из лучших методов в современном исполнении.
  • Машинное обучение и глубокое обучение окажутся полезными в исследовательской и академической сфере.

 

Заключение

В этой статье у нас был обзор машинного обучения и глубокого обучения с иллюстрациями и различиями, также с акцентом на будущие тенденции. Многие приложения AI используют алгоритмы машинного обучения, прежде всего, для обеспечения самообслуживания, повышения производительности агентов и повышения надежности рабочих процессов. Алгоритмы машинного обучения и глубокого обучения включают захватывающую перспективу для многих предприятий и лидеров отрасли.

Читать  Искусственный интеллект - главный технологический тренд на рынке IT

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Если статья понравилась, то поделитесь ей в социальных сетях:

Читайте также

5 1 голос
Рейтинг статьи
Подписаться
Уведомить о
guest

**ссылки nofollow

0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
Рекомендуемое
Важно понять математические понятия, необходимые для TensorFlow, прежде чем создавать…

Спасибо!

Теперь редакторы в курсе.