Поиск по сайту:
Человек есть ум (Амвросий).

TensorFlow — Keras

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (1 оценок, среднее: 5,00 из 5)
Загрузка...
22.07.2019
Как установить TensorFlow на CentOS 7

Keras — это компактная, простая в изучении высокоуровневая библиотека Python, работающая поверх фреймворка TensorFlow. Это сделано с акцентом на понимание методов глубокого обучения, таких как создание слоев для нейронных сетей, поддерживающих концепции форм и математических деталей. Создание freamework может быть следующих двух типов:

  • Последовательный API
  • Функциональный API

Рассмотрим следующие восемь шагов для создания модели глубокого обучения в Керасе:

  • Загрузка данных
  • Предварительная обработка загруженных данных
  • Определение модели
  • Компиляция модели
  • Подходит указанная модель
  • Оцените это
  • Сделайте необходимые прогнозы
  • Сохранить модель

Мы будем использовать блокнот Jupyter для выполнения и отображения вывода, как показано ниже:

Шаг 1 — Загрузка данных и предварительная обработка загруженных данных осуществляются первыми для выполнения модели глубокого обучения.

import warnings
warnings.filterwarnings('ignore')

import numpy as np
np.random.seed(123) # для воспроизводимости

from keras.models import Sequential
from keras.layers import Flatten, MaxPool2D, Conv2D, Dense, Reshape, Dropout
from keras.utils import np_utils
Using TensorFlow backend.
from keras.datasets import mnist

# Загрузка предварительно перетасованных данных MNIST в наборы поездов и тестов
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
Y_train = np_utils.to_categorical(y_train, 10)
Y_test = np_utils.to_categorical(y_test, 10)

 

Этот шаг может быть определен как «Импорт библиотек и модулей», что означает, что все библиотеки и модули импортируются как начальный шаг.

Шаг 2 — На этом шаге мы определим архитектуру модели:

model = Sequential()
model.add(Conv2D(32, 3, 3, activation = 'relu', input_shape = (28,28,1)))
model.add(Conv2D(32, 3, 3, activation = 'relu'))
model.add(MaxPool2D(pool_size = (2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation = 'softmax'))

 

Читать  Что такое AIOPS?

Шаг 3 — Давайте теперь скомпилируем указанную модель:

model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])

 

Шаг 4 — Теперь мы подгоним модель, используя данные обучения:

model.fit(X_train, Y_train, batch_size = 32, epochs = 10, verbose = 1)

 

Вывод созданных итераций выглядит следующим образом:

Epoch 1/10 60000/60000 [==============================] - 65s - 
loss: 0.2124 - 
acc: 0.9345 
Epoch 2/10 60000/60000 [==============================] - 62s - 
loss: 0.0893 - 
acc: 0.9740 
Epoch 3/10 60000/60000 [==============================] - 58s - 
loss: 0.0665 - 
acc: 0.9802 
Epoch 4/10 60000/60000 [==============================] - 62s - 
loss: 0.0571 - 
acc: 0.9830 
Epoch 5/10 60000/60000 [==============================] - 62s - 
loss: 0.0474 - 
acc: 0.9855 
Epoch 6/10 60000/60000 [==============================] - 59s -
loss: 0.0416 - 
acc: 0.9871 
Epoch 7/10 60000/60000 [==============================] - 61s - 
loss: 0.0380 - 
acc: 0.9877 
Epoch 8/10 60000/60000 [==============================] - 63s - 
loss: 0.0333 - 
acc: 0.9895 
Epoch 9/10 60000/60000 [==============================] - 64s - 
loss: 0.0325 - 
acc: 0.9898 
Epoch 10/10 60000/60000 [==============================] - 60s - 
loss: 0.0284 - 
acc: 0.9910

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Если статья понравилась, то поделитесь ей в социальных сетях:

Читайте также

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest

**ссылки nofollow

0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
Рекомендуемое
Изучите концепцию жестких ссылок в Linux и ее связь с…

Спасибо!

Теперь редакторы в курсе.