нейронные сети

TensorFlow — вложение слов
-Вложение слова — это концепция отображения отдельных объектов, таких как слова, на векторы и действительные числа. Это важно для ввода для машинного обучения. Концепция включает в себя стандартные функции, которые эффективно преобразуют дискретные входные объекты в полезные

TensorFlow — Визуализация TensorBoard
-TensorFlow включает в себя инструмент визуализации, который называется TensorBoard. Он используется для анализа графика потока данных, а также для понимания моделей машинного обучения. Важная особенность TensorBoard включает в себя просмотр различных типов статистики о параметрах и деталях

TensorFlow — Рекуррентные нейронные сети
-Рекуррентные нейронные сети — это тип глубоко ориентированного на обучение алгоритма, который следует последовательному подходу. В нейронных сетях мы всегда предполагаем, что каждый вход и выход не зависит от всех других слоев. Нейронные сети такого типа называются

TensorFlow — сверточные нейронные сети
-После понимания концепций машинного обучения мы можем переключить наше внимание на концепции глубокого обучения. Глубокое обучение является разделом машинного обучения и считается решающим шагом, предпринятым исследователями в последние десятилетия. Примеры реализации глубокого обучения включают в себя такие

TensorFlow — Основы
-В этой главе мы узнаем об основах TensorFlow. Начнем с понимания структуры данных тензора. Тензорная структура данных Тензорные элементы используются в качестве основных структур данных в языке TensorFlow. Тензорные элементы представляют соединительные ребра в любой блок-схеме,

TensorFlow — Машинное обучение и глубокое обучение
-Искусственный интеллект — одна из самых популярных тенденций последнего времени. Машинное обучение и глубокое обучение составляют искусственный интеллект. Диаграмма Венна, показанная ниже, объясняет взаимосвязь машинного обучения и глубокого обучения: Машинное обучение Машинное обучение —

TensorFlow — Математические основы
-Важно понять математические понятия, необходимые для TensorFlow, прежде чем создавать базовое приложение в TensorFlow. Математика считается сердцем любого алгоритма машинного обучения. Именно с помощью основных понятий математики определяется решение для конкретного алгоритма машинного обучения. Вектор Массив

TensorFlow — Понимание искусственного интеллекта
-Искусственный интеллект включает в себя процесс моделирования человеческого интеллекта с помощью машин и специальных компьютерных систем. Примеры искусственного интеллекта включают обучение, рассуждение и самокоррекцию. Приложения искусственного интеллекта включают распознавание речи, экспертные системы, распознавание изображений и машинное зрение.

TensorFlow — Установка
-Для установки TensorFlow важно, чтобы в вашей системе был установлен «Python». Python версии 3.4+ считается наилучшим для начала установки TensorFlow. Для установки TensorFlow в операционной системе Windows выполните следующие шаги. Шаг 1 — Убедитесь, что версия Python

TensorFlow — Введение
-TensorFlow — это библиотека или структура программного обеспечения, разработанная командой Google для максимально простой реализации концепций машинного обучения и глубокого обучения. Он объединяет вычислительную алгебру методов оптимизации для легкого вычисления многих математических выражений. Официальный сайт TensorFlow