Поиск по сайту:
Компьютерная игра настолько же хорошо заменяет игру вдвоем, насколько резиновая женщина настоящую. (Сергей Федин) АФОРИЗМ ЖЕНЩИНА ИГРА

TensorFlow — Понимание искусственного интеллекта

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (1 оценок, среднее: 5,00 из 5)
Загрузка...
04.06.2019
Как установить TensorFlow на CentOS 7

Искусственный интеллект включает в себя процесс моделирования человеческого интеллекта с помощью машин и специальных компьютерных систем. Примеры искусственного интеллекта включают обучение, рассуждение и самокоррекцию. Приложения искусственного интеллекта включают распознавание речи, экспертные системы, распознавание изображений и машинное зрение.

Машинное обучение — это отрасль искусственного интеллекта, которая занимается системами и алгоритмами, которые могут изучать любые новые данные и шаблоны данных.

Давайте сосредоточимся на диаграмме Venn, упомянутой ниже, для понимания концепции машинного обучения и глубокого обучения.

TensorFlow - Понимание искусственного интеллекта

 

Машинное обучение включает в себя раздел машинного обучения, а глубокое обучение является частью машинного обучения. Способность программы, которая следует концепциям машинного обучения, заключается в улучшении характеристик наблюдаемых данных. Основным мотивом преобразования данных является совершенствование своих знаний с целью достижения лучших результатов в будущем, обеспечение вывода, приближенного к желаемому результату для этой конкретной системы. Машинное обучение включает в себя «распознавание образов», которое включает в себя способность распознавать образцы в данных.

Шаблоны должны быть обучены, чтобы показать результат желаемым образом.

Машинное обучение можно обучить двумя разными способами:

  • Тренировка под наблюдением
  • Обучение без присмотра

 

Контролируемое обучение

Контролируемое обучение включает в себя процедуру, в которой обучающий набор дается в качестве входных данных для системы, где каждый пример помечен желаемым выходным значением. Обучение в этом типе выполняется с использованием минимизации конкретной функции потерь, которая представляет ошибку вывода относительно требуемой системы вывода.

Читать  Windows создает собственного конкурента Nvidia DLSS на базе искусственного интеллекта

После завершения обучения точность каждой модели измеряется в отношении непересекающихся примеров из обучающего набора, также называемого проверочным набором.

TensorFlow - Понимание искусственного интеллекта

 

Лучший пример для иллюстрации «обучения под наблюдением» — это набор фотографий с информацией, содержащейся в них. Здесь пользователь может обучить модель распознавать новые фотографии.

 

Обучение без учителя

В обучении без учителя или в обучении без учителя включите примеры обучения, которые не обозначены системой, к которой они относятся. Система ищет данные, которые имеют общие характеристики, и изменяет их, основываясь на внутренних особенностях знаний. Этот тип алгоритмов обучения в основном используется при кластеризации проблем.

Лучший пример для иллюстрации «обучения без учителя» — это набор фотографий без информации и пользовательская модель обучения с классификацией и кластеризацией. Этот тип обучающего алгоритма работает с допущениями, так как информация не предоставляется.

TensorFlow - Понимание искусственного интеллекта

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Если статья понравилась, то поделитесь ей в социальных сетях:

Читайте также

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest

**ссылки nofollow

0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
Рекомендуемое
В связи с тем, что различные платформы для ведения блогов,…

Спасибо!

Теперь редакторы в курсе.