ИТ Блог. Администрирование серверов на основе Linux (Ubuntu, Debian, CentOS, openSUSE)
Понедельник, 31 марта, 2025
Сегодня у нас 1 праздник:
Международный День Резервного Копирования (World Backup Day). Пользователи сайта социальных новостей reddit предложили сделать дату 31.03 Международным днём резервного копирования, аргументируя это тем, что никогда заранее нельзя узнать, какие сюрпризы преподнесёт 1.04

Алгоритм топологической сортировки

Алгоритм топологической сортировки

Алгоритм топологической сортировки работает с DAG (прямой ациклический граф). Смысл топологической сортировки в том, что если какой-либо узел указывает на другой узел, то после него будет идти узел, указывающий на другой узел. Таким образом, в этом случае, если у нас есть циклический граф, мы не можем предсказать, какой узел после какого узла. Вот почему алгоритм топологической сортировки работает только с ациклическим графом, а не с циклическим графом.

Каждый граф имеет более одной топологической последовательности сортировки, поскольку она зависит от степени вхождения ребер узлов. Первый начальный узел, который мы выбираем с числом узлов в степени, равен 0.

Давайте разберемся с алгоритмом топологической сортировки на примере.

Алгоритм топологической сортировки

 

Шаг 1: мы вставляем те узлы, количество входящих ребер которых равно 0. Таким образом, эти узлы являются узлами 1 и 4.

Алгоритм топологической сортировки

 

Шаг 2:

а. Начнем с узла 1. Мы можем выбрать любой узел между узлами 1 и 4.

б. Мы уменьшаем каждое ребро узла на 1, которое связано с узлом 1. Мы уменьшаем ребро узлов (0, 2 и 3).

в. Мы перемещаем узел 1 из списка в топологически отсортированный список, как показано ниже.

Алгоритм топологической сортировки

 

Шаг 3:

а. Теперь мы исходим из списка, который является Node 4.

б. Мы уменьшаем все исходящие ребра узлов, соединенных с узлом 4, которые являются узлами (0 и 3).

в. Теперь узел 3 не имеет входящих ребер, поэтому мы помещаем его в список, а узел 4 переходит в топологически отсортированный список.

Алгоритм топологической сортировки

 

Шаг 4:

а. Теперь мы исходим из списка, который является узлом 3.

б. Мы уменьшаем все исходящие ребра узлов, соединенных с узлом 3, которые являются узлами (0 и 2).

в. Теперь узлы 0 и 2 не имеют входящих ребер, поэтому мы помещаем их в список, а узел 3 переходит в топологически отсортированный список.

Алгоритм топологической сортировки

 

Шаг 5:

а. Теперь мы исходим из списка, который является Node 0.

б. Поскольку исходящих ребер из Node 0 нет, мы просто добавляем их в список топологической сортировки.

Алгоритм топологической сортировки

 

Шаг 6:

а. Теперь мы исходим из списка, который является узлом 2.

б. Поскольку исходящих ребер из узла 2 нет, мы просто добавляем их в список топологической сортировки.

Алгоритм топологической сортировки

 

Шаг 7:

Наконец, мы отсортировали список здесь.

Алгоритм топологической сортировки

 

Алгоритм топологической сортировки

Ниже приведены шаги алгоритма топологической сортировки, которым мы должны следовать.

Шаг 0: Рассчитайте степень вхождения каждого узла графа.

Шаг 1: Сначала нам нужно найти узел, у которого входящие ребра равны нулю.

Шаг 2: мы удаляем этот узел из графа и добавляем его в список топологических порядков сортировки.

Шаг 3: Удалите те узлы, у которых есть исходящие ребра.

Шаг 4: Уменьшите степень вхождения на количество связанных ребер, которые были удалены.

Шаг 5: Повторяйте шаги 1–4, пока не останется узлов с нулевой степенью вхождения.

Шаг 6: Убедитесь, что все элементы расположены в правильной последовательности.

Шаг 7: Теперь мы отсортировали заказ из шага 6.

Шаг 8: Положите конец алгоритму.

 

Код Python : ниже приведена реализация приведенного выше примера на Python.

 

fromcollectionsimportdefaultdict

classbuildGraph :

def__init__(self, nodes : int) :
self.nodes= nodes

# Теперь мы сохраняем граф в формате смежного списка
self.adjListDetails=defaultdict(list)

# Он будет хранить информацию о входящих
ребрах определенного узла 

# в самом
self.count_numbers_of_incoming_edge_of_a_node= []

# Мы сохраняем отсортированные узлы в топологическом порядке
self.topological_sorted_order= []

# Мы храним информацию обо всех тех узлах, которые
# не имеют входящих ребер в графе
self.nodes_have_zero_incoming_edges= []

# Теперь мы создаем смежный список всех графов для сортировки
defAddGraphEdge (self, source :int, destination : int) :
self.adjListDetails[source].append(destination)
self.count_numbers_of_incoming_edge_of_a_node[destination] +=1

defTopologicalSortAlgorithm (self) :

for node inrange(self.nodes) :
ifself.count_numbers_of_incoming_edge_of_a_node[node] ==0 :
self.nodes_have_zero_incoming_edges.append(node)

whileself.nodes_have_zero_incoming_edges :
self.nodes_have_zero_incoming_edges.sort()
            source =self.nodes_have_zero_incoming_edges.pop(0)

# итерация по соседнему списку
if source inself.adjListDetails :
for node inself.adjListDetails[source] :
self.count_numbers_of_incoming_edge_of_a_node[node] -=1
ifself.count_numbers_of_incoming_edge_of_a_node[node] ==0 :
self.nodes_have_zero_incoming_edges.append(node)

self.topological_sorted_order.append(source)

print("Топологический порядок сортировки: "+str(self.topological_sorted_order))

defmain() :

number_of_nodes=7
    graph =buildGraph(number_of_nodes)
graph.count_numbers_of_incoming_edge_of_a_node= [0] *number_of_nodes

graph.AddGraphEdge(0,2)
graph.AddGraphEdge(0,5)
graph.AddGraphEdge(1,3)
graph.AddGraphEdge(1,6)
graph.AddGraphEdge(2,4)
graph.AddGraphEdge(3,5)
graph.AddGraphEdge(5,2)
graph.AddGraphEdge(5,4)
graph.AddGraphEdge(6,2)

graph.TopologicalSortAlgorithm()

if __name__ =="__main__" :
main()

 

 

Выход:

Топологический порядок сортировки: [0, 1, 3, 5, 6, 2, 4]

 

Временная сложность алгоритма топологической сортировки:

Общее время обработки алгоритма равно O (E + N), где E представляет количество ребер, а N представляет количество узлов в графе. Затем, на следующем шаге, мы должны вычислить степень входа каждого узла, что обычно занимает O(E) раз, а затем поместить все эти узлы в отсортированный список, где их степень входа равна нулю, что занимает O(N) раз. раз. Таким образом, общая временная сложность алгоритма топологической сортировки составляет O (E+N).

Но пространственная сложность алгоритма топологической сортировки составляет O (N), что равно общему количеству узлов в графе.

 

Применение:

  1. Топологическая сортировка очень полезна для нахождения цикла графа.
  2. Алгоритм топологической сортировки используется для определения условий взаимоблокировки в операционной системе.
  3. Алгоритм топологической сортировки используется для поиска кратчайшего пути во взвешенном ациклическом графе.

 

Вывод :

В этой статье мы узнали еще об одном важном алгоритме — топологической сортировке. Мы видели, что этот алгоритм работает только с ациклическими графами. Алгоритм топологической сортировки также помогает определить порядок составления задачи. Алгоритм топологической сортировки имеет много преимуществ в реальном времени, например поиск кратчайшего пути. Поскольку топологическая сортировка чрезвычайно полезна, каждый программист и студент должен хорошо понимать этот алгоритм.

Exit mobile version